
Scaling Limits for PDE-Based Simulation

Paul F. Fischer∗‡ Katherine Heisey† Misun Min‡

We analyze algorithm/architecture performance characteristics that have a direct im-
pact on the scalability of present-day and future turbulent flow simulations on large-scale
parallel computers.

I. Introduction

Parallel computing is founded on the principle that, given enough work for a given problem, one can
subdivide the computation across P processors and realize an effective P -fold reduction in time to solution.
On today’s architectures, any PDE-based or particle-based simulation that uses a billion gridpoints or
particles can easily be distributed across two compute nodes and run in half the time—for essentially the
same power—compared with running on just a single node. This computational scenario, running a problem
of fixed size in half the time on two processors or nearly one-P th the time on P processors, is termed strong
scaling and is the focus of this paper. Specifically, we explore the basic question of how far one can scale
a given problem, defined by its computational resolution n (e.g., the number of gridpoints), when using P
processors.

The relevance of the strong scaling question is expressed succinctly in the equation

SP = η P S1, (1)

which relates the speed (i.e., the inverse time-to-solution) for solving a given problem to the number of
processors, P . Here, SP is the speed (in Mflops, say) when using P processors and η = η(P, n) is the
parallel efficiency. Although (1) is effectively nothing more than the definition of η, it in fact expresses
a deep point, namely, that parallel computing can deliver a multiplicative increase in performance
when using P processors. This statement holds whether the processors are traditional cores, multicore-
nodes, or accelerators. In the current post-frequency-scaling era where clock rates are no longer increasing,
the multiplicative effect of the distributed parallel computing model is the only mechanism we have for
increasing the speed of calculations by factors of 1000s. Thus, it is vital that future architectures and
algorithms continue to support this pathway to high-performance computing (HPC).

We illustrate the multiplicative effect by considering the strong-scale performance of the incompressible
flow solver Nek5000 applied to a thermal-hydraulics flow problem in the domain depicted in the top panel of
Fig. 1. This is a complex domain with hundreds of rods separated by helically wrapped spacer wires. The
spatial discretization is based on the spectral-element method.1,2 The mesh comprises 3 million spectral
elements of order N=9, for a total of n = 2 billion gridpoints. Navier-Stokes timestepping is based on
semi-implicit timesteppers that use multilevel-preconditioned GMRES for the pressure solve and Jacobi-
preconditioned iteration for the viscous update. The lower panel of Fig. 1 shows the wall-clock time per step
and parallel efficiency on Mira, the IBM Blue Gene/Q at the Argonne Leadership Computing Facility. The
timing curves reflect the use of either one or two MPI ranks per core, with two ranks per core outperforming
a single rank because of BG/Q’s hardware support for threads. The parallel efficiency graph, plotted for the
two-ranks-per-core case, shows that efficiency is unity out to P=262,144 MPI ranks (131,072 cores), drops
to 0.8 for P=524,288, and is 0.6 for P=1,048,576.

Before proceeding with parallel performance analysis, we make several comments about the simulation
results of Fig. 1. First, the discretization is based on an efficient spectral element method (SEM) that
requires only O(n) storage and O(nN) work for Nth-order spatial approximations.1,3 (Here, N=9.) For

∗CS and MechSE Depts., Univ. of Illinois, Urbana-Champaign
†Dept. of Neurosience, Washington University of St. Louis
‡Mathematics and Computer Science Div., Argonne National Laboratory

1 of 10

American Institute of Aeronautics and Astronautics



turbulent channel flow, the spectral element method requires an order of magnitude fewer points than 2nd-
order schemes and the cost per grid point is the same.4 Thus, the SEM realizes a given accuracy with
minimal data movement. Moreover, while the local operators are dense (but never formed), the solution is in
C0 and the data exchanges between element interfaces are thus communication-minimal—only one plane of
data is exchanged, as would be the case for a standard finite element or second-order finite difference scheme.
Finally, the computationally-intensive pressure Poisson problem is solved using highly-tuned multigrid solvers
that require only 15 iterations per step for the problem shown.

Figure 1. Strong-scaled Navier-
Stokes results using one (red) or
two (green) MPI ranks/core on
Mira for n=2 billion.

While the scaling behavior illustrated in Fig. 1 appears reasonable,
it raises several questions. Is it the best possible? What, exactly, is
good? Can this performance be sustained on an exascale architecture?
For what problem sizes, n? In the following sections, we address these
questions through modeling and analysis of several algorithms on different
architectures.

Two computing scenarios are of interest to the HPC community:
bounded and unbounded resources. The bounded case is typical of com-
puting on local clusters. One uses all the resources on the cluster. This
scenario bounds P by the compute resources; consequently, the granular-
ity n/P usually is large (e.g., a half-billion in the preceding example, if
only two compute nodes are available.) Our attention will focus on the
unbounded resource case, which corresponds to large computing facilities
with 104–106 cores. Here, one rarely uses the entire machine. Our ques-
tion is “Why not?” We note that most HPC centers encourage submission
of large jobs, which often get favorable queue priorities. Moreover, if one
can strong-scale a simulation from P processes to 2P , the turnaround
time drops by a factor of 2, with a corresponding increase in productiv-
ity. Furthermore, since power is essentially fixed under the strong-scaling
model, there is no increase (or decrease) in power consumption if P is
increased. Why, then, do most people not use the entire (or a significant
fraction of the) machine at HPC centers? The answer is the reduction
in efficiency. The objective of this study is to quantify, under suitable
simplifying assumptions, the reasons for this performance drop-off and to
identify potential mitigation strategies as we move forward with future
HPC architectures.

The outline of the remainder of the paper is as follows. In Section II, we introduce computational
complexity estimates for several algorithms used to solve the Poisson equation in lR3 and examine the
scalability limits of each. In Section III, we analyze the strong-scaling potential of GPGPUs based on a
recent performance study for time-dependent electromagnetics simulations. In Section IV, we summarize
our ideas and discuss our findings.

II. Modeling Multi-CPU Performance

Computational complexity estimates for parallel computing have been well established since before the
introduction of the first distributed-memory parallel computers. A comprehensive summary of algorithms
and complexity estimates can be found in the text by Fox et al.5 and in contemporary papers on parallel
CFD..2,6 emergent principle across all the applications is the surface-to-volume effect. This principle says
that the work per process scales as the local volume, or ∼ Cw n/P in the current context, while the com-
munication scales as Cc (n/P )γ , with γ = (d − 1)/d and d being the dimension of the problem. For PDEs,
d is typically the spatial dimension, whereas for matrix-oriented operations, such as Gaussian elimination, d
would be two. One can expect order-unity efficiency when Cwn/P > Cc(n/P )γ . To quantify this principle
in the context of today’s architectures, we consider as a model problem the solution of the Poisson equation
in lR3 using a 7-point finite-difference stencil. We investigate the expected scalability of several algorithms
on up to a billion cores.

To begin, we introduce two parallel performance models for the time T required to solve a problem of
size n on P processors. The models reflect the situations where computation and communication are either

2 of 10

American Institute of Aeronautics and Astronautics



overlapped or not.

Nonoverlapping: T (n, P ) = Ta/P + Tc(n, P ) + c0 (2)

Overlapping: T (n, P ) = max[Ta/P, Tc(n, P )] + c0 (3)

Here, Ta reflects time spent on the parallelizable work for a single processor, Tc is the communication
overhead, and c0 represents non-parallelizable work or other overhead such a data motion. We note that the
multiplicative effect of parallel computing (i.e., order unity efficiency) is realized only when

Ta/P � Tc(n, P ) + c0,

which is a manifestation of Amdahl’s law. Our interest is in quantifying the (P, n) parameter space where
we can expect performance to be good. A reasonable breakpoint in either the overlapping or nonoverlapping
case is where communication is subdominant to the time spent doing useful work. That is,

Ta/P ≥ Tc(n, P ) + c0. (4)

We will take equality in (4) to be the breakpoint for any particular algorithm/architecture coupling. For
our CPU-based analysis, we will ignore c0, since it typically will be small compared with the communication
overhead.

A. Interprocessor Communication Costs

The next component required for the complexity analysis is a model for interprocessor communication costs.
The linear model

tc(m) = α∗ + β∗m (5)

is well suited for the present analysis. Here, m is the number of 64-bit words transferred in a single mes-
sage between two processors, α∗ is the internode latency in seconds, and β∗ is the inverse-bandwidth in
seconds/word. We consider a nondimensional version of (5),

tc(m) = (α + βm) ta, (6)

where ta = 1/S1 (seconds) is the inverse of the flop rate observed for the given algorithm on the computer
in question, in the absence of communication.

Figure 2. Ping-pong times for
Cray XK7 (Titan), IBM BG/P
(Intrepid), and IBM BG/Q
(Mira).

The communication constants are measured by running ping-pong
tests with MPI for varying values of m between rank 0 and rank k. Figure
(2) shows typical ping-pong results for k = 15, . . . , 511. (Lower values of
k correspond to intranode communication and are omitted here for clar-
ity.) Each time point represents an average of anywhere from 4 to a 1,000
tests, with 1,000 trials being used for the shorter messages. The model
curve (5) is plotted as a dashed line for each case. We see that the XK7
has the lowest minimal times and highest peak bandwidth but that the
timings are noisy despite the averaging, whereas the BG timings are es-
sentially noise free. Moreover, a weakness of the model (5) is revealed by
the plots, particularly for BG/Q, namely, that the model underpredicts
communication by roughly a factor of 2 in the important range m ≈ 10–
104. The underprediction is platform dependent and could readily be
incorporated into the complexity model. The curves also indicate that on
BG/Q there would be merit in changing the shift points to support longer
messages before shifting to the three-trip message protocol. The challenge
on BG/Q is that one must set aside enough buffer space to accommodate
the potentiality of a million unsolicited inbound messages (one from each
MPI rank). In practice, this condition almost never occurs, however, and
exploiting mechanisms such as the Eager message protocol allows this size to be adjusted.

Table 1 presents a list of machine parameters measured over the past several decades. The arithmetic
times, ta, are based on the matrix-matrix product performance for sets of noncached matrices of order

3 of 10

American Institute of Aeronautics and Astronautics



Year ta (µs) αta (µs) βta (µs/wd) α β m2 machine

1986 50 5960 64 119.2 1.28 93 Intel iPSC-1 (286)

1987 0.333 5960 64 17898 192 93 Intel iPSC-1/VX

1988 10 938 2.8 93.8 0.28 335 Intel iPSC-2 (386)

1989 0.25 938 2.8 3752 11.2 335 Intel iPSC-2/VX

1990 0.1 80 2.8 800 28 29 Intel iPSC-i860

1991 0.1 60 0.8 600 8 75 Intel Delta

1992 0.066 50 0.15 760 2.3 333 Intel Paragon

1995 0.02 60 0.27 3000 13.5 222 IBM SP2 (BU96)

1996 0.016 30 0.02 1875 1.25 1500 ASCI Red 333

1998 0.006 14 0.06 2333 10 233 SGI Origin 2000

1999 0.005 20 0.04 4000 8 500 Cray T3E/450

2005 0.002 4 0.026 2000 13 154 BGL/ANL

2008 0.0017 3.5 0.022 2060 13 160 BGP/ANL

2011 0.0007 2.5 0.002 3570 2.87 1250 Cray Xe6 (KTH)

2012 0.0007 3.8 0.0045 5430 6.43 845 BGQ/ANL

2015 0.0004 2.2 0.0015 5500 3.75 1467 Cray XK7

Table 1. Measured machine-dependent parameters

N = 10, chosen to reflect the computational load for the spectral-element method. The communication
times are based on half the round-trip times for point-to-point ping-pong tests taken over a large number of
processor pairings on each platform. The latency values are based on tc(1) and taken to be the maximum
observed between any two pairings. On most machines, message exchanges between two MPI ranks not on
the same node are only weakly dependent on node placement. We remark that these timings are for isolated
ping-pong tests and do not reflect network contention. For domain-decomposition-based approaches to the
solution of PDEs, contention is generally not an issue: in the large n/P limit, significant message traffic
communication is dominated by work; in the small n/P limit, communication is dominated by internode
latency.

We have also listed in Table 1 the parameter

m2 := α∗/β∗, (7)

which, according to the linear model, is the size of message that would take twice as long to transmit as
a one-word message. From an algorithmic design and analysis standpoint, m2 is a convenient delimiter
between the short- and long-message limits. If there are several messages of length m < m2, it is clearly
beneficial to agglomerate them together into one longer message, if possible.

B. Computational Models

Armed with the parallel performance data from Table 1, we turn now to complexity estimates for solution
of the Poisson equation in lR3 discretized with a 7-point finite-difference stencil. We consider three solution
strategies for the sparse linear system that results: Jacobi iteration, Jacobi-preconditioned conjugate gradient
iteration, and geometric multigrid.

1. Jacobi Iteration

We begin with Jacobi iteration. To make the model somewhat realistic, we assume that the equation is
discretized with variable coefficients that reflect, say, geometric deformation. The local update takes the
form

uki = = a−1ii

fi +
∑
j∈Ii

aij u
k−1
j

 , i = 1, . . . , ñ, (8)

4 of 10

American Institute of Aeronautics and Astronautics



where ñ =ceil(n/P ) is the number of points local to a processor and Ii is the index set associated with
gridpoint i. Assuming that the cardinality of Ii is six, the arithmetic time for a single Jacobi iteration (8) is

TaJ ∼ 14(n/P ) ta. (9)

Assuming that the parallel work decomposition leads to perfect cubic arrays of data on each processor, a
distributed-memory parallel implementation of this scheme requires near-neighbor exchanges of m = (n/P )

2
3

values for each of six faces.7 The resulting communication complexity is

TcJ ∼ 6 tc(m) = 6
(
α+ (n/P )

2
3

)
ta. (10)

We now seek values of n/P for which communication is subdominant, that is,

TcJ
TaJ

=
6(α+ β(n/P )

2
3 )

14n/P
≤ 1. (11)

For BG/Q with α = 3750 and β = 2.86, the inequality is satisfied when

n/P ≥ 1700. (12)

At this granularity, one expects the cost per iteration to be

Tmin,J ≈ 2 · 14 · 1700 · ta. (13)

Simply stated, this analysis indicates that Jacobi iteration, ostensibly one of the most scalable PDE solvers,
will require approximately 1,700 gridpoints per processor on a machine with the same relative hardware
characteristics as BG/Q. Moreover, from (11) we see that this result depends only on (n/P ) and not on P
itself. The time Tmin,J is not necessarily the minimum time that could be realized; it is simply the breakpoint
where one would expect parallel efficiency to diminish. (For (n/P ) lower than this breakpoint, overall power
utilization certainly must increase.)

We note that Jacobi iteration is not a scalable algorithm. The number of iterations must scale at least
as the diameter of the grid, kmax ∼ Cn

1
3 . If we were solving a convection-dominated problem, this value

would be a reasonable prediction of the number of iterations. For the Poisson problem, the count is closer
to kmax ∼ Cn

2
3 . With n/P fixed by (11), we have

Time to solution ≈ 2 · 14 · (n/P )n
γ
3 = 2 · 14 · (n/P )1+

γ
3 P

γ
3 .

When (n/P ) is fixed at its lower bound, as scalability limits dictate, the time to solution must scale as P
γ
3 ,

with γ=1 or 2, depending on whether the problem is convection-dominated or Poisson-like. We comment
that although Jacobi is a poor iterative solver for the Poisson equation, it is a reasonable model for explicit
timestepping algorithms that would be used for advection or wave equations such as considered in Section
III.

2. Conjugate Gradient Iteration

Jacobi-preconditioned conjugate gradient (CG) iteration finds the best approximation in the Krylov subspace
spanned by the iterates of the Jacobi iteration and thus converges more rapidly than any other iteration
covering the same space.8 The costs for this optimality are twofold: an increase in work from 14 to 27
operations per gridpoint and the addition of two global vector reduction operations. If we assume that the
vector reductions are performed with a contention-free binary fan-in/fan-out, the communication cost of
each is

Tall-reduce = (2 log2 P )α ta. (14)

Balancing the communication and arithmetic costs for CG thus leads to the condition

TcCG
TaCG

=
6(α+ β(n/P )

2
3 ) + 4α log2 P

27n/P
≤ 1. (15)

5 of 10

American Institute of Aeronautics and Astronautics



Unlike Jacobi iteration, the CG complexity depends on P as well as (n/P ). Since we are interested in
exascale, we consider currently accessible values of P and those that could theoretically deliver exascale,
that is, P = 106 and 109. For these cases, we find the strong-scale limit (15) is realized with the BG/Q
parameters when

n/P ≥ 12000, P = 106, (16)

n/P ≥ 17000, P = 109. (17)

Here the nearly 3/2 increase in (n/P ) results from the fact that log2 106 ≈ 20 and log2 109 ≈ 30.

Figure 3. BG/Q mpi allreduce

times in software and hardware,
along with 1/2 round-trip ping-
pong times.

The complexity increase resulting from the projective dot products in
conjugate gradient iteration can be avoided through the use of Chebyshev
iteration,8 which has the same asymptotic complexity as CG but elimi-
nates the need for vector reductions. In practice, however, we’ve found
that Chebyshev typically results in a 10 to 15 percent increase in iteration
count, even with optimally estimated eigenvalue ranges, and is therefore
not of interest unless one is running at the critical (n/P ) value, that is, in
the range where all-reduce really dominates the total costs. Other choices,
such as low-communication CG variants,9 are also possible. On the BG se-
ries and some other forthcoming platforms, however, the log2 P overhead
is significantly reduced by having hardware support for all-reduce opera-
tions. Figure 3 shows the all-reduce times for processor counts P = 16, 32,
64, 128,. . ., 524288 (running one process per core) on the Argonne BG/Q,
Mira. The times are for mpi allreduce on vectors vp, which implements

v =

P−1∑
p=0

vp (18)

and redistributes v to each processor p for v and vp ∈ lRm. Figure 3
includes timings for (18) implemented in software and hardware. The
software times are close to the model (14). By contrast, the hardware times are bounded by 3 to 5 times
the ping-pong model (5). The dashed lines in the figure show this model (black) and this bracketing interval
(red). A reasonable complexity bound for all-reduce is thus to replace (14) by

Tall-reduce = Car α ta, (19)

where Car=3–5.
If we use (19) in the CG complexity estimate, we arrive at new granularity bounds deriving from the

updated formula,

TcCG
TaCG

=
6(α+ β(n/P )

2
3 ) + 2Car α

27n/P
≤ 1, (20)

which is once again independent of P . For BG/Q-based parameters with Car = 5, we find the inequality
(20) is satisfied when

n/P ≥ 2200, (21)

which is almost as low as the point-Jacobi granularity limit (12) and remarkably close to the Navier-Stokes
break-even point of Fig. 1.

3. Geometric Multigrid

Even with the best-fit property, CG iteration does not achieve order-independent convergence rates. A truly
scalable Poisson solver requires a multilevel strategy. Here, we consider geometric multigrid as a model
multilevel solver. In particular, we consider the following V-cycle.

6 of 10

American Institute of Aeronautics and Astronautics



for k = 1 : Nlevel − 1
smooth residual
exchange faces
compute residual
restrict residual
reduce n by 2× in each direction

end

solve 1×1 system

for k = Nlevel − 1 : −1 : 1
prolongate and add correction
exchange faces
increase n by 2× in each direction

end

For our analysis we assume that the load is initially balanced; that the number of points in each direction
is enumerated as 0, 1, . . . , nd, with nd = 2Nlevel ; and that the number of processors is a power of 8. A detailed
count of the operations, including the restriction, smoothing, and prolongation at each level, reveals that
the total operation count per iteration for this V-cycle is ∼ 50n for n gridpoints. With the assumption of
perfect load balance, the arithmetic time is therefore

TaMG ∼ 50(n/P )ta. (22)

Similarly, the communication complexity is

TcMG ∼
(

8α log2(n/P ) + 30β (n/P )
2
3 + 8α log2 P

)
ta. (23)

In (23) we once again see a direct P dependence. Here, the 8α log2 P term comes from the communication
intensive coarse-grid solve phase of multigrid that commences with one degree of freedom per processor,
restricts down to a single active processor (idling 7/8 of the active processors after each restriction), and
prolongates back up to P active processors.

Proceeding as in the previous cases, we establish the strong-scale limit for geometric multigrid as the
point where

TcMG

TaMG
=

8α log2(n/P ) + 30β (n/P )
2
3 + 8α log2 P

50n/P
≤ 1, (24)

For P = 106 and 109 with BG/Q parameters we find the multigrid granularity limits:

n/P ≥ 21000, P = 106, (25)

n/P ≥ 27000, P = 109. (26)

We remark that (26) predicts that an exascale Poisson problem would require over 27 trillion gridpoints
to realize reasonable parallel efficiency. The large increase over conjugate gradient iteration is primarily
a result of the communication intensive coarse-grid solve. If this operation could be cast as a hardware-
supported parallel prefix operation similar to the all-reduce support on BG, we speculate that the multigrid
communication costs could be reduced to

TcMG ∼
(

8α log2(n/P ) + 30β (n/P )
2
3 + 4 (5α)

)
ta, (27)

which would lead to (n/P ) = 7500 as the fine-grained multigrid limit for P = 109. This nearly fourfold
increase in scalability would translate into a fourfold reduction in CPU time through the use of more proces-
sors (with no reduction in power). One can, in fact, cast multigrid as a sequence of prefix operations, even
in the more general case of algebraic multigrid, as was demonstrated by Bell et al.10 Identifying primitives
that can be supported by the network interface card would be a potentially productive avenue for co-design
in future-generation HPC systems.

7 of 10

American Institute of Aeronautics and Astronautics



C. Multi-CPU Summary

We briefly present here a few comments regarding factors influencing the preceding model-based analysis.
The analysis makes several basic assumptions and is designed to allow rapid estimation of performance
characteristics on distributed-memory architectures at scale. First, one of the most influential components
of the estimates is arithmetic time, ta, that is embedded in the definition of α and β. This timescale
can easily change by significant factors through vectorization/optimization of the dominant computational
kernels. Second, with machines such as the Cray XK7 (Titan), measuring even α∗ and β∗ is difficult because
of the network noise. One of the advantages of BG/Q is that every partition of the processor set is convex,
such that only the user’s traffic traverses the partition. The use of convex partitions also permits the use of
dedicated network resources for hardware-supported collective operations.

Several variants of the models can affect scalability. For example, the solution of vector-based systems of
PDEs such as Maxwell’s equations or the compressible Navier-Stokes equations allows the communication
of multiple solution components (six in the case of Maxwell’s and five for Navier-Stokes) in each nearest-
neighbor data exchange. This agglomeration amortizes the message latency and allows for lower values of
(n/P ) than is possible with the scalar Poisson equation. We find, for example, that (n/P ) can be as low as
a few hundred when strong-scaling to P > 105 on BG/P with our spectral-element electromagnetics code
NekCEM. Additional physics modules can also influence the strong-scale limit. For example, combustion
simulations entail a significant amount of pointwise chemistry that can be strong-scaled with no commu-
nication overhead. This local work can amortize the communication overhead of the hydrodynamics and
allow for finer granularity (lower (n/P )). Another factor that influences scalability in general-purpose finite-
/spectral-element codes is whether one uses a continuous or discontinuous Galerkin (DG) formulation. In the
strong-scale limit, DG has a distinct advantage in that each element communicates with at most 6 neighbors.
By contrast, the continuous Galerkin method requires communication among edges and vertices, which can
raise the number of messages up to anywhere from 26 to ≈ 50. Because these are all short messages (< m2

in length), their costs are equal. Thus, we can expect DG to have a significant scaling advantage.

III. Modeling Multi-GPU Performance

General purpose graphical processing units (GPUs) offer the potential for significant performance, cost,
and power benefits over traditional CPUs and are at the heart of several current and future HPC systems.
GPUs introduce (or, extend, rather) a second level of parallelism within each node. The strategy of GPUs
is to attain performance by having hundreds of independent fine-grained tasks that are either executing or
waiting on memory requests within the node. With enough tasks, all function units can be busy and one
realizes a 100 % efficiency at the node level. Of paramount importance in the multi-GPU context is to know
how many tasks are required to attain this efficiency, because that is the number that will set the granularity
limit in an HPC setting. In this section, we analyze performance data taken from a recent OpenACC port
of NekCEM to a multi-GPU implementation11 and use it to illustrate some of the concepts introduced in
the preceding sections.

NekCEM is an explicit time-marching code to solve Maxwell’s equations, shown here in source-free form.

ε
∂E

∂t
= ∇×H, µ

∂H

∂t
= −∇×E, (28)

The spectral-element/discontinuous Galerkin (SEDG) formulation results in a diagonal mass matrix, so time-
advancement of these equations has a complexity that is quite similar to Jacobi-preconditioned conjugate
gradient iteration. A major difference is that one can amortize the nearest-neighbor communication costs
by updating the surface flux terms for all six components of the vector-field pair (E,H) in a single pass.

Figure 4 shows performance results for the OpenACC/GPU-based variant of NekCEM developed in Otten
et al.11 Timing runs are presented for the Cray XK7, Titan, using one GPU per node. Also shown in panels
(b) and (c) are multi-CPU runs using 1, 4, 8, and 16 cores per node on Titan and on the IBM BG/Q, Vesta,
for P=1, 2, 4,. . .,128 cores (one rank per core). We remark that the OpenACC port was highly successful,
with a single GPU sustaining performance equivalent to 40 CPUs on Titan. Moreover, the GPU power usage
was about 40% of that required by the all-CPU simulation on the same platform.

To understand the data in Figure 4 we first note that a column of dots corresponds to classic strong
scaling. As one moves down a vertical line, the problem size n is fixed and P doubles from curve to curve.
On the other hand, a row of dots corresponds to weak scaling. Starting from the left and moving right, the

8 of 10

American Institute of Aeronautics and Astronautics



processor counts and problem sizes double. If the points are on the same horizontal line (i.e., have the same
runtime) then we have perfect weak scaling, as is the case for n/P > 105 in Figure 4(a). We see that the
largest problems (large, fixed, n) realize a two-fold reduction in solution time with each doubling of processor
count over the range of P considered.

For the GPU-only (i.e., P=1) case, the strong scale limit corresponds to n/P ≈ 105. In the absence
of communication overhead, it is clear that the GPU has another limiter—the c0 term in (2) is no longer
negligible. This behavior is understandable given that there is a high degree of parallelism internal to the
GPU. Those resources are not exploited unless there is sufficient work on the GPU. (We remark that, for
the single GPU case, there is little data traffic between the GPU and the host.) For the GPU performance
curves in Fig. 4 we have indicated a strong-scale limit line where the performance diminishes with small
n/P .

(a) (b) (c)

Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF
BG/Q Vesta; 1000 timestep runs with the number of grid points n = E(N + 1)3 increased with E =
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

We note that the strong-scale limit is not observed for the CPU-only cases (graphs (b) and (c) in Fig. 4).
These cases continue to scale well down to the point of one element per core, which is the natural granularity
limit for the SEDG formulation. The lower-bound runtime is indicated by the granularity-limit line in
the plots. In the present case, the GPU outperforms the CPU, but Otten et al.11 show that the CPU-
based simulations can outperform the GPU from a pure speed standpoint for the case of N=7, where the
granularity limit of the SEDG formulation is reduced to 343 points per core. Although the use of more cores
allows the CPU-based simulations to be faster, it does not alter their overall energy consumption, which
remains at 2.5× that of the GPU-based runs. That NekCEM can sustain strong scalability to this level of
granularity is not surprising given the analysis of the preceding section. The code is DG-based and thus
requires communication with at most six neighbors per element. Moreover, the implementation exploits the
exchange of multiple (six) vector components for each nearest-neighbor update, thus amortizing internode
latency over more work.

IV. Conclusion

We have observed the scaling performance of two production codes, Nek5000 and NekCEM. These codes
have scaled to over a million MPI ranks out to granularity limits of (n/P ) = 2000 and 343, respectively.
For Nek5000, one has a mixture of Jacobi-preconditioned CG iterations (for diffusion), explicit timestepping
(for advection) and multigrid-preconditioned CG (for the pressure). The observed 60% parallel efficiency
for P = 106 is in keeping with the respective granularity estimates for Jacobi and multigrid iteration of
(n/P ) = 1700 and 21000. For NekCEM, we would anticipate strong scaling out to (n/P ) ≈ 1700/6 because
communication costs are amortized over six times the work per timestep. Remarkably, this scaling is observed
on both the IBM BG/Q and the Cray XK7.

The foregoing analysis demonstrates that the granularity limits observed for Nek5000 are nearly optimal
for the given architecture charateristics and that the degree of scalability is not strongly tied to the underlying
discretization, but results from fundamental work/communication balances over a range of different solution
strategies. The analysis further demonstates that scalable solution strategies for a CFD simulation at exascale
would require about 10 trillion gridpoints to make effective use of the entire machine.

We argue that continued performance gains on HPC platforms will need to address strong-scale paral-
lelism, which means that performance developments must focus on reducing the problem size per node if one

9 of 10

American Institute of Aeronautics and Astronautics



hopes to reduce time-to-solution. In particular, lowering the n1/2 for GPU-based nodes could provide oppor-
tunities for significant performance gains in the unbounded-resource scenario characteristic of large parallel
computing centers. In addition, we recommend hardware support for parallel prefix operations above and
beyond all-reduce so that more sophisticated solvers such as multigrid may be implemented at speed.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract DE-AC02-06CH11357 . This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 and resources
of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

References

1Patera, A., “A spectral element method for fluid dynamics : laminar flow in a channel expansion,” J. Comput. Phys.,
Vol. 54, 1984, pp. 468–488.

2Fischer, P. and Patera, A., “Parallel Spectral Element Solution of the Stokes Problem,” J. Comput. Phys., Vol. 92, 1991,
pp. 380–421.

3Deville, M., Fischer, P., and Mund, E., High-order methods for incompressible fluid flow , Cambridge University Press,
Cambridge, 2002.

4Sprague, M., Churchfield, M., Purkayastha, A., Moriarty, P., and Lee, S., “A comparison of Nek5000 and OpenFOAM
for DNS of turbulent channel flow,” Nek5000 Users Meeting, Argonne National Laboratory, 2010.

5Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K., and Walker, D. W., Solving Problems on
Concurrent Processors, Prentice-Hall, Englewood Cliffs, NJ, 1988.

6Fischer, P. and Patera, A., “Parallel Simulation of Viscous Incompressible Flows,” Ann. Rev. Fluid Mech. 1994 , Vol. 26,
1994, pp. 483–528.

7Gropp, W., Lusk, E., and Thakur, R., Using MPI-2: Advanced Features of the Message-Passing Interface, MIT Press,
Cambridge, MA, 1999.

8Golub, G. and Loan, C. V., Matrix Computations, Johns Hopkins University Press, Baltimore, 1996.
9Hoemmen, M., Communication-Avoiding Krylov Subspace Methods, Ph.D. thesis, University of California, Berkeley,

2010, Berkeley, California.
10Bell, N., Dalton, S., and Olson, L., “Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods,” SIAM Journal

on Scientific Computing, Vol. 34, No. 4, 2012, pp. C123–C152.
11Otten, M., Gong, J., Mametjanov, A., Vose, A., Levesque, J., Fischer, P., and Min, M., “An MPI/OpenACC Implemen-

tation of a High Order Electromagnetics Solver with GPUDirect Communication,” Submitted to Int. J. High Perf. Comput.
Appl.

10 of 10

American Institute of Aeronautics and Astronautics


	Introduction
	Modeling Multi-CPU Performance
	Interprocessor Communication Costs
	Computational Models
	Jacobi Iteration
	Conjugate Gradient Iteration
	Geometric Multigrid

	Multi-CPU Summary

	Modeling Multi-GPU Performance
	Conclusion

